
Exploring expressions and scripts
in Adobe After Effects

Completed with the aim of graduating with a
Bachelor of Science in Engineering

From the St. Pölten University of Applied Sciences
Media Technology degree course

Completed by

Sebastian Mayrhuber
1110261086

Under the supervision of
DI Thomas Wagensommerer

Vienna, on
(Signature Author)

Declaration

The attached research paper is my own, original work undertaken in partial fulfillment of my

degree.

I have made no use of sources, materials or assistance other than those, which have been

openly and fully acknowledged in the text. If any part of another person’s work has been

quoted, this either appears in inverted commas or (if beyond a few lines) is indented.

Any direct quotation or source of ideas has been identified in the text by author, date, and

page number(s) immediately after such an item, and full details are provided in a reference

list at the end of the text.

I understand that any breach of the fair practice regulations may result in a mark of zero for

this research paper and that it could also involve other repercussions.

Vienna, on
(Signature Author)

i

Abstract

This paper takes a close look at the two features 'expressions' and 'scripts' inside Adobe's

compositing tool After Effects. The focus lies on exploring their purpose of use and finding out if

they can be used to achieve results which couldn't actually be achieved without them. After a brief

introduction to the topic, a detailed explanation, including real world examples, of the two features

is given. A practical example near the end of the paper illustrates how to effectively combine

expressions and scripts in one project and convert After Effects into a Generative Art Composer.

ii

Table of Contents

Declaration.. i

Abstract.. ii

List of Figures.. iv

List of Abbreviations.. iv

1. Introduction... 1

1.1. Problem and scope.. 1

1.2. Structure.. 1

2. Expressions in After Effects... 3

2.1. Definition.. 3

2.2. Purpose... 3

2.3. Use.. 3

2.4. Examples... 7

2.4.1. Example 'clock'... 7

3. Scripts in After Effects.. 9

3.1. Definition.. 9

3.2. Purpose... 9

3.3. Use.. 9

3.4. Examples... 13

3.4.1. Example 'SetGuideLayers'... 13

4. Case study: 'Generative Art Composer'.. 15

4.1. Introduction.. 15

4.2. Script process.. 15

5. Discussion... 19

6. Appendix.. 21

6.1. References.. 21

6.1.1. Research papers.. 21

6.1.2. Books... 21

6.1.3. Manuals.. 21

6.1.4. Web pages... 22

6.2. CD content... 22

6.3. Script listings.. 23

6.3.1. ConvertToGuideLayers.jsx... 23

6.3.2. GenArtsComposer.jsx...24

iii

List of Figures

Fig. 1: Create an expression using the stopwatch symbol (Geduld, 2008, p. 3) …......................... 4

Fig. 2: Buttons for controlling expressions with opened expression language menu 4

Fig. 3: Using the pick whip tool (Geduld, 2008, p. 22) …... 5

Fig. 4: 'ExtendScript Toolkit' editor ….. 9

Fig. 5: AE object hierarchy (Reprinted from Appendix 'Scripting' of Adobe After Effects CS5 visual

effects and compositing studio techniques (p. 7), by M. Christiansen, 2011, Berkeley, CA:

AdobePress. Copyright 2011 by Mark Christiansen) …... 11

List of Abbreviations

AE: After Effects

API: Application Programming Interface

CS5: Creative Suite 5

HTML: Hypertext Markup Language

Mac OS: Macintosh Operating System

SDK: Software Development Kit

VB Script: Visual Basic Script

VBA: Visual Basic for Applications

XML: Extensible Markup Language

XMP: Extensible Metadata Platform

iv

Introduction | Introduction

1. Introduction

1.1. Problem and scope

This paper focuses on the often undervalued scripting possibilities of Adobe's composting tool

After Effects. As for today, July 2013, After Effects reached version 12 (also called 'CC', short for

Creative Cloud) and is one of the most popular layer-based compositing programs in the area of

creating motion graphics and visual effects.

In today's industry the time factor is more important than ever. Tight deadlines and

aggressive competition force professionals to work as quickly and efficiently as possible. The

reason for this probably correlates with the ongoing rapid technological progress. Access to

information and media is getting easier, digital media communication and therefore the need for

time-based media content is constantly rising (Preissl, 2009, p. 53). In order to meet these

requirements, software also has to constantly adapt itself to enable preferably smooth, flexible and

quick workflows. After Effects and its user interface already does a good job in that regard

compared to other software as it is rather clear and easy to understand. So there is not much room

to improve on this side. But as tasks grow more complex, such as calculating positions of graphical

elements in three-dimensional space or finding and updating source text in hundreds of text layers

spread throughout the project file, a manual approach can quickly become rather tedious and time

consuming. Fortunately, Adobe included the possibility to control its software and a lot of its

properties via their own scripting languages 'Expressions' and 'Adobe ExtendScript'. Both

languages are based on the popular 'JavaScript' language, which is rather easy to understand and

learn. In that regard several questions arise: Which situations would it be wise to invest time in

writing a script rather than doing a task manually? What are the boundaries of these 'features'?

What can be achieved using scripts which otherwise would not even be possible?

1.2. Structure

The second part of this paper focuses on the concept of 'expressions' inside of After Effects. A

detailed explanation of what they are, how and where they are written, and how they can be used

inside the software shall be given. Furthermore, examples of popular expression commands shall

demonstrate the real world usage of this feature.

The third part follows the second part's structure but revolves around 'scripts' in After

Effects. A detailed explanation should point out the difference between scripts and expressions,

how to automate repetitive tasks, perform complex calculations, and even use some functionality

1

Introduction | Structure

not directly exposed through the graphical user interface. Subsequently, examples of popular script

commands shall demonstrate their real world usage.

In the fourth part a real world example employing both expressions and scripts is created

and discussed. The goal is to demonstrate the thought processes which go behind the idea of

using AE as a tool to create Generative Art. The script provides a user interface enabling users to

customize the results and set parameters.

The last chapter serves as a summary and a critical reflection on the newly gained findings,

looks at the actual boundaries of these techniques and points out an additional possibility to extend

the functionality of After Effects.

2

Expressions in After Effects | Expressions in After Effects

2. Expressions in After Effects

2.1. Definition

Expressions are a powerful set of tools inside of After Effects which allow the user to control the

behavior of layer properties and create complex relationships between them (Christiansen, 2011,

p. 314). Layer properties are: position (defined by x and y coordinates), opacity, scale, rotation,

applied effects and so on. Very similar to a programming script, an expression is a little software

application defining a certain value of a layer property at a certain point in time (Adobe Systems

Incorporated, 2012a, p. 616) – they are typed commands (Geduld, 2008, p. xi).

2.2. Purpose

In AE, you typically set keyframes for properties of your visual assets (images, videos, text, et

cetera) which have been arranged on a composition frame to create an animation. By using

expressions, you are able to assign static values to all kinds of keyframe-able properties as well

but this is only their most basic function. A variety of commands allow you to link properties to other

properties (even from different layers) to produce cascading behaviors or results which would

otherwise be very difficult, laborious or even impossible to achieve (Christiansen, 2011, p. 314).

You could for instance define that when an image is scaled up, a text below the image should also

grow in size. In AE this mechanism is called parenting – a function which is also available on its

own inside of AE, without the need of expressions. But by using expressions this concept becomes

much more powerful and versatile (Geduld, 2008, p. xiii). Complex commands include the

possibility to use mathematical operations, introduce randomness, manipulate time, transform

values from a two dimensional space into a 3D space and many more (Christiansen, 2011, p. 315).

2.3. Use

So how exactly do expression commands look like and how and where are they applied? In the world

of programming the available commands and functions combined are known as languages. Just like

spoken languages, programming languages have a predefined vocabulary and certain rules to follow.

Back in 2001 Adobe released version 5 of AE which was the first one to include the After Effects

expression language (Siegel, 2010, p. 13). It is based on a subset of JavaScript, a programming

language, which is mainly used in web browsers for creating dynamic HTML. Being a subset, it only

includes the core functionality of JavaScript without any web browser specific extensions. What Adobe

added are commands such as “Comp” (for “Composition”), “Camera“, “Layer” et cetera which allow

you to access most of the values inside of AE (Adobe Systems Incorporated, 2012a, p. 624).

3

Expressions in After Effects | Use

To create an expression you Alt+click (on Windows. Opt+click on Mac OS) the little

stopwatch symbol you can find to the left of a property in the timeline panel or, if the property

belongs to an effect, in the effect controls panel.

At this point, new buttons for controlling the expression and a text area to enter your commands

appear. The button with the little right-faced triangle is particularly useful: clicking it reveals an

expressions reference which lists all of the available commands and shows their correct syntax.

4

Figure 2: Buttons for controlling expressions with opened expression language menu.

Figure 1: Create an expression using the stopwatch symbol. (Geduld, 2008, p. 3)

Expressions in After Effects | Use

The second button from the right is the pick whip. By clicking and dragging it onto another property

or object AE will insert the correct expression text into the text area to link the two.

When using expressions, there are a few important details and limitations to be aware of:

An expression may generally be applied only to a property that can be

keyframed, and it can affect only the value of that property. That is, an

expression can affect one and only one thing: the value of the property to

which it is applied. This means that although an expression has access

to many composition and layer attributes (layer width and height, et

cetera) as well as the values of other properties, it can only read, not

change, them. (Christiansen, 2011, p. 315).

In addition, if you have created an expression you are still able to set keyframes for that

property. The expression gets re-evaluated once the keyframe is reached and it takes the new

keyframe-value as the new base for the execution of the command (Adobe Systems Incorporated,

2012a, p. 616).

5

Figure 3: Using the pick whip tool. (Geduld, 2008, p. 22)

Expressions in After Effects | Use

A convenient feature regarding expressions are expression controls: Basically, they allow

you to setup a custom set of interface elements for controlling your expressions. You can choose

between six different objects such as: slider, angle control or a color picker (Christiansen, 2011, p.

337). Attaching for example a slider control to a value inside of an expression enables you to

update the otherwise static value more quickly and easily.

2.4. Examples

In the manual of AE you will find a complete reference with all the available commands listed and

explained in detail (Adobe Systems Incorporated, 2012a, p. 629). It is very practical to, at least

once, look through them all to get an idea of what is possible as most of them are very specific and

will not be needed often. A few popular examples include:

The 'wiggle()' command:

The wiggle expression is quite fun to use as it randomly shakes the value of a property over time.

How wild the shaking occurs can be controlled with two parameters passed on to the function. That

means the expression wiggle(5, 10); results in 5 wiggly motions per second and each wiggle

changes the value for about ten pixels, degrees, et cetera on average.

The 'random()' command-family:

This command returns random values. Different variations of this function allow you to restrict the

resulting values to a certain range of numbers (e.g. random numbers between 50 and 150). This

command opens up a lot of opportunities for personal imagination.

The 'loop()' command-family:

The loop command also exists in a number of variations. Basically, they all allow you to repeat a

certain segment of a keyframed animation continuously. Through various parameters you can

determine if the loop should jump to the beginning at the end of the animation (type = “cycle”),

cycle back and forth (type = “pingpong”) and so on.

2.4.1. Example 'clock'

This short example of animating an analog clock illustrates how time-saving the use of expressions

can be. The regular process of setting up rotation keyframes for the hour, minute and second hand

throughout the length of your sequence would be quite tedious. This task can be done much easier

and more efficiently if you use four simple lines of expressions.

6

Expressions in After Effects | Examples

Please note: This is not a complete guide for setting up an analog clock – only the most relevant

parts concerning the topic of expressions are stated. The complete project file can be found on the

CD attached to this paper.

1. First, the graphical assets are arranged on the composition frame and their anchor points

are set to the center of the bottom edge so that the clock hands can rotate in the correct

manner.

2. For this task the expression 'time' comes in handy: time represents the composition time,

in seconds, at which the expression is being evaluated (Adobe Systems Incorporated,

2012a, p. 630). With this information the current rotation angle of the respective clock hand

can be calculated.

3. The second hand needs sixty seconds for one full turn (360°). That means in one second

the second hand travels 360 / 60 degrees, which gives six degrees. When we add the

following expression to the rotation property of the second hand, the hand will turn correctly

timed for as long as the layer exists in the composition:

transform.rotation = time*6;

The result is a constant, 'fluid' motion as the expression is evaluated every frame of the

determined movie frame rate (e.g. 25 frames per second). If you want the second hand to

jump from one second to the next, like most analog clocks do, we can use another

expression called 'posterizeTime(framesPerSecond)'. This command lets us change

the frame rate for a property to any value below the movie frame rate. So by adding the

following expression before our previous expression, we can achieve the desired result:

posterizeTime(1);

4. The minute hand follows the same principle: It needs 60 minutes for one full turn, that is

3600 seconds. That means in one second the minute hand travels 360 / 3600 degrees,

which gives 0.1 degrees. We add the following expression to the rotation property of the

minute hand to let it rotate at the correct speed:

transform.rotation = time*0.1;

5. And finally the hour hand. One full turn takes 43200 seconds, so we add the following

expression to the rotation property of the minute hand to let it rotate at the correct speed:

transform.rotation = time*0.008333333333;

7

Scripts in After Effects | Scripts in After Effects

3. Scripts in After Effects

3.1. Definition

The process of developing a program run using a scripting language is called scripting. The

resulting script consists of a series of commands which get executed one after another to complete

a certain task (Siegel, 2010, p. 21). In contrast to the previously mentioned expressions which

answer solely the purpose of reading and manipulating properties, scripts tell an application to do

something (Adobe Systems Incorporated, 2012a, p. 616).

3.2. Purpose

The main reason Adobe included the feature of scripting into many of its tools is for automating

reoccurring, time consuming, error-prone tasks such as resizing and saving hundreds of images.

But the capabilities go much further: when it comes to After Effects, you can search for and edit

source text inside of text layers, dynamically create objects such as compositions, layers and

masks or send an e-mail as soon as the render process is complete, just to name a few (Adobe

Systems Incorporated, 2012a, p. 613). With the possibility to read and write files (e.g. text files

such as 'XML') and build custom user interfaces with the opportunity to configure individual

settings, scripts are very well suited for being part of bigger workflows (Meyer & Meyer, 2010,

bonus chapter 37c, p. 1).

3.3. Use

The topic of scripting around Adobe tools can be a little confusing at first because all scriptable

tools (e.g. Photoshop, Illustrator, InDesign) support not only one scripting language but a few of

them. Depending on your operating system, you can use AppleScript on Mac OS and VBScript,

Visual Basic or VBA on Windows. JavaScript is supported on both platforms. The main scripting

language though used to access After Effects functionality is called After Effects ExtendScript.

Analogous to the aforementioned expression language it is also based on JavaScript and can be

identified by the file extension .jsx or .jsxbin. The platform specific languages (AppleScript, Visual

Basic, et cetera) can interact directly with some of Adobe's tools (Photoshop, Illustrator, et cetera)

but in the case of AE they can only be used as kind of a starting environment to execute

ExtendScript commands or scripts (Adobe Systems Incorporated, 2012b, p. 6).

8

Scripts in After Effects | Use

Scripts can basically be written in any type of text editor but for enhanced comfort you can

use Adobe's ExtendScript Toolkit which is included with all script-enabled applications. It

represents a complete development and testing environment with features such as syntax-

checking, running scripts from right within the tool without the need to save the file or a debugger,

which allows you to inter alia execute scripts line by line which can be very helpful when e.g. trying

to spot errors (Adobe Systems Incorporated, 2010, p. 13).

There are several ways to run scripts. For example:

• You can copy your script into a specific scripts folder to get AE to load it when the

application is started. The folder is located inside the AE installation directory. Inside of AE

you can then run the script by navigating to the menu and choose: File > Scripts > [your

script name].

• Choose and run a script by navigating to the menu and select: File > Scripts > Run Script

File.

• If your script features user interface elements and is meant to appear in a dockable panel

copy it into the 'ScriptUI Panels' folder which is located inside the AE installation directory

inside the folder 'Scripts'. Inside of AE you can then run the script by navigating to the menu

and choose: File > Window > [your script name] (at the bottom of the list).

• Scripts can be run from the command line or via AppleScript without having to manually

9

Figure 4: 'ExtendScript Toolkit' editor.

Scripts in After Effects | Use

open the application at all. You can use this technique for example to execute a script when

a custom keyboard shortcut is pressed (Adobe Systems Incorporated, 2012c, pp. 5–7).

According to Meyer and Meyer,

… scripting in After Effects is object based. From a script’s perspective,

After Effects appears as a hierarchy of objects. Each object in the

hierarchy has associated methods that you can invoke and attributes that

you can examine (and often alter). Think of objects as “things” (projects,

comps, layers, cameras, masks, position property, et cetera). Think of

methods as actions that objects can perform. Think of attributes as

characteristics of objects that you can examine and sometimes modify. …

When you write a script, you are essentially just navigating the object

hierarchy, using the methods and attributes of the objects along the way

to accomplish your objective. (2010, bonus chapter 37c, p. 2).

10

Scripts in After Effects | Use

11

Figure 5: AE object hierarchy: This diagram shows the relationships among After Effects objects, how to

access one object from another, and how some objects are based on other objects. Reprinted from

Appendix 'Scripting' of Adobe After Effects CS5 visual effects and compositing studio techniques (p. 7), by

M. Christiansen, 2011, Berkeley, CA: AdobePress. Copyright 2011 by Mark Christiansen.

Scripts in After Effects | Use

Most of what can be done via After Effects' user interface can also be accomplished using

the ExtendScript language, and the range of functions expands with each version (Adobe Systems

Incorporated, 2012c, p. 3). But you have to keep in mind that the main purpose of scripting is to

reduce the user's workload when faced with redundant, cumbersome tasks (Adobe Systems

Incorporated, 2012a, p. 613). If you want to bring completely new functionality into AE you can do

this by developing plug-ins using the programming languages C or C++ in conjunction with the

After Effects SDK (i.e. Software Development Kit) (Adobe Systems Incorporated, 2012a, p. 611).

3.4. Examples

For the field of scripting Adobe offers an independent, extensive manual called Scripting Guide.

Inside, you will find detailed information about all the classes, objects, methods, attributes, and

global functions defined by After Effects ExtendScript along with some examples. Again, like

already mentioned in the examples section of the expression chapter, for being able to estimate

the full potential of scripting inside of AE it is a good idea to at least skim through this guide once.

Common attributes include:

- “app.project” for accessing the current project object.

- “app.project.item(1).name” for getting the name of the first object in the project panel.

Common methods include:

- “app.project.item(index)” for retrieving an object from the project panel identified by its

index number.

- “app.project.item(index).layers.byName(name)” for retrieving the first (topmost) layer

object with the specified name inside of an item object with the specified index number.

3.4.1. Example 'SetGuideLayers'

This short example demonstrates a possible scenario in which the use of scripts comes in handy.

AE offers the possibility to turn any layer type, except cameras and lights, inside of a composition

into a 'guide layer'. Guide layers are inherently not included in the final render process so they can

be used as a reference while for example arranging elements on the screen. The following script

turns all selected layers which include the word 'guide' in their names into guide layers. In all other

cases the guide layer attribute is set to false. By following this simple naming convention, a user

can save time before launching the render process. Instead of manually editing all the relevant

layers within the composition he just selects them all, launches this script and all his guide layers

12

Scripts in After Effects | Examples

will be hidden in the final rendering.

var comp = app.project.activeItem;

for (var i = 0; i < comp.selectedLayers.length; i++)
{
 var layer = comp.selectedLayers[i];

 var setGuide = layer.name.indexOf("guide");

 if (setGuide == -1)
 layer.guideLayer = false;
 else
 layer.guideLayer = true;
}

13

Case study: 'Generative Art Composer' | Case study: 'Generative Art Composer'

4. Case study: 'Generative Art Composer'

4.1. Introduction

This chapter describes the development process of a generic project in which both of the two

aforementioned scripting tools are deployed. A case scenario was created which could not be

realized without the help of AE's scripting abilities, at least not to the same extent. Through close

examination of the subject matter, the author gained valuable knowledge in the course of being

able to answer this paper's research questions.

The basic idea behind this script seizes a contemporary form of artistic pursuit: Generative

Art. As Florian Josef Gruber states,

… Generative Design can be defined as a digital form of art, whose

shape and process is not determined in detail, is constantly evolving and

up to a certain degree random and unforeseeable. One has to develop

processes that for one intend a certain aesthetic policy and

organizational principle (theme) and additionally implement a circular

system for aleatoric change (variation). (2012, p. 249).

After setting up this framework the process of creating new work is then executed by a

computer software, media or other aids. The focus is not so much on the resulting artwork but

rather on process of formation itself and the ideas behind it (“Generative Kunst,” 2013).

This script brings this concept into After Effects. The user provides general guidelines but it

is the tool itself which is then left with the task to create a video based on random values and user

generated content. Random elements are chosen out of a pool of assets and placed on the

timeline, be them single images, image sequences, video clips or audio clips. Also an option is

provided to let the content of the chosen items start from random points in time and repeat in a

loop once they ended. This way every execution of the script results in a new, unique composition

of graphical elements. After Effects gets misused – rendering it a tool to create 'Generative Art'.

4.2. Script process

Before going into detail, the author likes to point out that basic programming knowledge is

necessary to understand the following explanations, in particular the syntax of the JavaScript

language, as the goal of this is to give the reader an idea about how the procedure of writing a

script for Adobe After Effects can look like and which issues one might encounter. Also important to

14

Case study: 'Generative Art Composer' | Script process

note is that, for the sake of this paper, it was not considered necessary to reach a production-ready

status meaning that a correct application of the script is expected and not all possible sources of

errors are being caught.

In the beginning a few rules have been defined for this script to work. AE has to be

launched and a prepared project file has to be opened before the script can execute. The user has

to provide modules out of which the final video will be composed. That could be prepared AE-

compositions, movie files, image files – really anything AE allows to import and place on the

timeline. The assets have to be placed inside folders which follow this simple naming convention:

“layer1”, “layer2” and so on. The reason behind this lies in the scripts' ability to stack assets on top

of each other. Assets placed inside 'layer2' will appear above assets from 'layer1', assets from

'layer3' above assets from 'layer2' and so on. The number of folders is not limited. The elements

themselves can be named arbitrarily.

The script is divided into four areas: 'Init Vars', 'Functions', 'Main' and 'Helper Functions'.

For the purpose of a better understanding of the whole procedure the areas will not necessarily be

explained in that order but the author will describe the process in the order of how the commands

get executed by the application. First, an object 'o' is declared on the root-level of the script as a

container to hold all the variables which should be globally accessible. When debugging with the

ExtendScript Toolkit the 'Data Browser' panel can be used to examine and set variables and a big

advantage of using such a global object is that all your important variables are then clearly

displayed there in one spot and not scattered throughout the panel. The global object also holds

translation-string variables for every text displayed in the user interface as the script is already

prepared to be displayed in various languages by using the built in global function 'localize()'.

Then the 'Main'-area is processed beginning with an evaluation of AE' version number.

'CS5' (= v10.0) or higher is required to execute this script. The current version number is stored in

the property 'version' of the global object 'app'. 'app' is essential as it defines the root of the

object hierarchy from which most of the scripting functionalities are accessed. Following next is the

procedure of building the graphical interface for receiving user input. AE offers several ways to

consolidate interface elements onto containers. This script supports two variants: Depending on

how the script is launched it either shows up as a floating palette or as a dockable panel with the

option to get launched automatically when AE starts (see chapter 3.3). Then all the visible

elements are created: 'EditText' objects to let users input text and determine the features of the

video composition to be generated, 'CheckBox' objects for activating or deactivating certain

functions of the script, 'Button' objects to initiate displaying a help message and for launching the

generation process and 'StaticText' objects for labeling all those interactive elements. Through the

help of the 'Bounds'-, the 'Dimension'- and other objects, AE gives you the option to explicitly

15

Case study: 'Generative Art Composer' | Script process

define x- and y-position- and width- and height values for all elements. But in this case the

'automatic layout' capability of ExtendScripts' ScriptUI component combined with the technique of

using 'resource specification strings' was chosen. This way proper sizes and positions for control

elements and containers are automatically determined with the additional option to manually

intervene and define for example if the child elements of a container should be organized in rows

or columns, where they should be aligned within the available space or how many pixels child

elements should be separated from each other ('spacing') (Adobe Systems Incorporated, 2010, pp.

86–91). The 'buildUI' - function ends by setting up event-handlers that define which actions are

carried out when the user interacts with certain elements. The remaining part of the main area

deals with loading and saving the current state of the user interface. This handy feature of AE

allows for storing custom defined 'key and value'-pairs in a preference file enabling you to bring

over data from one application session to the next.

By clicking the “Generate Composition”-Button in the bottom-right corner, the prime function

of the script 'generateComposition()' is called. In its first lines the available input textfields are

evaluated. With the help of those a user can set the essential properties of the container

composition the script is about to create. Like already mentioned in the beginning of this chapter,

only a simple 'filled in or not'-query is implemented at this point. For a fail-safe execution of the

script additional queries such as ensuring that the input values reside within controlled ranges,

would have to be implemented. Next, the evaluation of the first setting is carried out: the user is

given the opportunity to let the script automatically append a 'timestamp' at the end of the

composition name. A very useful option as After Effects allows multiple elements in the project to

have the same name. Using this setting unique names are generated each time the script is

executed and the new composition can be identified more easily. In the following step the project is

searched for folders which match the aforementioned naming convention. References to the found

folders are stored in an array for easier access later on. Afterwards the container composition is

created on the basis of the user's input and is also immediately selected in the project panel for

easier spotting. Now the essential part of the script takes place: The random addition of items into

the timeline of the container composition. The process starts with the folder 'layer1' and works its

way upwards until it reaches the last folder. With the help of the function 'Math.random()' an

arbitrarily item is chosen out of the folder and added to the timeline. At this point two further user

settings come into effect which help generate an even more random end result: The user can

decide wether the items themselves should begin at random points in time and if so, if their

playback should loop once they reached their final frames and play on for as long as they originally

lasted or not. This is achieved by using ExtendScripts' ability to dynamically add expressions to

item properties. In this case the 'timeRemap' property is driven by an expression which offsets its

16

Case study: 'Generative Art Composer' | Script process

value by a random number every frame which results in the desired effect. For single frame items

which have no duration per se these settings are ignored and they simply get assigned a random

duration between one and five seconds. After the item has been successfully added to the timeline

the script stores the current duration of the main composition in a helper variable 'curLength' in

order to know when the next random item should start. This process of adding items is now

repeated until the defined composition length is reached. The whole process is completed once all

found 'layer' folders are processed. At last, the final composition automatically opens for a quick

and comfortable review if the user chose so in the settings.

17

Discussion | Discussion

5. Discussion

With the integration of expressions and the ExtendScript language Adobe managed to provide a

fascinating and versatile extension to their popular compositing tool. They are not exactly

prominently placed inside of AE' user interface, waiting for the more experienced user to be found

and explored. Through the course of researching and experimenting on the topic of this paper the

author gained deep insight into the purpose and the capabilities of these tools. The main idea

behind both features is certainly to act as servants helping you to reach your aimed goals in less

time. Whenever you find yourself doing certain tasks over and over again, doing something which

follows an exact procedure or, in the case of expressions, want a layer property to behave in

certain way or be linked to any other property anywhere in the project, it might be a good moment

to take a look into the well edited reference documentations provided by Adobe (see reference

section). Depending of course on the programming skills of the person, getting used to Adobe's

programming language is not that difficult. The JavaScript-syntax is comparatively accessible and

easy to learn.

Expressions and scripts really expand the functionality of AE in many ways and enables the

user to do things which could not be achieved otherwise. The expression language includes many

special functions allowing you to, for example, calculate physical simulations (using sine waves,

Euler's number, the natural logarithm and much more), sample color data from images or easily

setup custom made interpolations between different sets of values. Granted, nearly all of these

scripted values could also be calculated elsewhere and then set by hand but the result and the

time taken to get there would be completely out of proportion.

ExtendScript scripts present a similar picture. This paper focused on the After Effects-

specific set of functions which make nearly every aspect of AE controllable. But considering the

entire range of functions the ExtendScript language offers the overall capabilities are greatly

enhanced. Here is a small excerpt:

• The method 'system.callSystem()' allows executing system commands and process

potential return values as if you would type them on the operating system's command line.

• An application programming interface (API) enables communication between all scriptable

Adobe tools.

• External communication is enabled through the Socket object. This way network

connections can be setup up allowing you for instance to exchange data with internet

servers.

• The programming environment can be extended by loading external shared libraries

18

Discussion | Discussion

(written in C or C++) through the ExternalObject object.

• Possibility to process XML documents by default.

• Possibility to access XMP standardized metadata.

All these modules combined make up for a pretty limitless use. And that this abundance of

possibilities is actually employed is easily comprehensible by looking for example at the constantly

growing range of scripts on websites such as www.aescripts.com.

In the authors opinion the option to introduce randomness to your project alone is worth the

time invested in learning these techniques as this greatly enlarges the creative scope. This set of

functions will most likely lead you to develop more flexible solutions and consult After Effects for

tasks which you did not think of before. And should you hit any boundaries, Adobe has another

solution ready which is even used for the all the native effects inside of AE: the plug-in architecture.

Plug-ins are little software modules developed with, among other things, the programming

languages C or C++ using Adobe's Software Development Kit (SDK) and make it possible to

introduce completely customized functionality to After Effects.

19

http://www.aescripts.com/

Appendix | Appendix

6. Appendix

6.1. References

6.1.1. Research papers

Gruber, F. J. (2012). If Code == Imagination : Theorie, Modelle und Entwurfsmuster generativer
Designprozesse.

Preissl, G. (2009). Gestaltungsfaktoren im Motion Grafic Design.

Siegel, M. (2010). Workflowoptimierung mit After Effects (am Beispiel c-tv).

6.1.2. Books

Christiansen, M. (2011). Adobe After Effects CS5 visual effects and compositing studio
techniques. Berkeley, CA: AdobePress.

Geduld, M. (2008). After Effects Expressions. Amsterdam; Boston: Focal Press/Elsevier.

Meyer, T., & Meyer, C. (2010). Creating motion graphics with After Effects: Version CS5.
Amsterdam: Focal Press/Elsevier.

6.1.3. Manuals

Adobe Systems Incorporated. (2010). Adobe Creative Suite 5 - JavaScript Tools Guide.
Retrieved June 23, 2013, from http://www.adobe.com/content/dam/Adobe/en/products/indesign
/pdfs/JavaScriptToolsGuide_CS5.pdf

Adobe Systems Incorporated. (2012a). Adobe After Effects - Hilfe und Übungen. Retrieved June
15, 2013, from http://help.adobe.com/archive/de/after-effects/cs6/after_effects_reference.pdf

Adobe Systems Incorporated. (2012b). Adobe - Skripte Einführung. Retrieved from local
installation directory of the Adobe Creative Suite CS6. On Microsoft Windows it can be found here:
c:\Program Files (x86)\Adobe\Adobe Utilities - CS6\ExtendScript Toolkit CS6\SDK\German\Adobe
Intro to Scripting.pdf. And on Mac OS here: ~/Applications/Utilities/Adobe Utilities – CS6
/ExtendScript Toolkit CS6/SDK/German/Adobe Intro to Scripting.pdf

Adobe Systems Incorporated. (2012c). Adobe After Effects CS6 Scripting Guide. Retrieved June
23, 2013, from http://blogs.adobe.com/aftereffects/files/2012/06/After-Effects-CS6-Scripting-
Guide.pdf

6.1.4. Web pages

Generative Kunst. In Wikipedia. Retrieved September 13, 2013, from
http://de.wikipedia.org/w/index.php?title=Generative_Kunst

20

Appendix | CD content

6.2. CD content

> root

 > After Effects files

 - Expressions and scripts CS5.5 - Mayrhuber Sebastian BMT11.aep

 > ExtendScript scripts

 - ConvertToGuideLayers.jsx

 - GenArtsComposer.jsx

 > References

 > Websites

 - Generative Kunst – Wikipedia.pdf

21

Appendix | Script listings

6.3. Script listings

6.3.1. ConvertToGuideLayers.jsx

/**
* ConvertToGuideLayers.jsx
* Copyright (c) 2013 Sebastian Mayrhuber. All rights reserved.
* portfolio: www.sebastianmayrhuber.at
*
* Name: ConvertToGuideLayers
* Version: 1.0
*
* Description:
* This script converts selected layers into guide layers if their names contain the word
'guide'.
* If 'guide' cannot be found in the name the 'guide layer' attribute of the layer is
unset.
*
* Usage:
* 1. Make sure every layer you want to turn into a guide layer has the word 'guide' in
its name.
* 2. Select one or more layers.
* 3. Run this script.
*
* Legal Notices:
* This script is provided "as is," without warranty of any kind, expressed or implied.
* In no event shall the script's author be held liable for any damages arising in any
* way from the use of this script.
*/

{
 var comp = app.project.activeItem;

 for (var i = 0; i < comp.selectedLayers.length; i++)
 {
 var layer = comp.selectedLayers[i];

 var setGuide = layer.name.indexOf("guide");

 if (setGuide == -1)
 layer.guideLayer = false;
 else
 layer.guideLayer = true;
 }
}

6.3.2. GenArtsComposer.jsx

/**
* GenArtsComposer.jsx
* Copyright (c) 2013 Sebastian Mayrhuber. All rights reserved.
* portfolio: www.sebastianmayrhuber.at
*
* Name: GenArtsComposer
* Version: 1.0
*
* Description:
* ..see variable 'o.strHelpText' below
*
* Usage:
* ..see variable 'o.strHelpText' below
*
* Legal Notices:
* This script is provided "as is," without warranty of any kind, expressed or implied.
* In no event shall the script's author be held liable for any damages arising in any

22

Appendix | Script listings

* way from the use of this script.
*/

/**
 * GenArtsComposer()
 *
 * Description:
 * This function contains the main logic for this script.
 *
 * Parameters:
 * thisObj - "this" object.
 *
 * Returns:
 * Nothing.
 */
(function GenArtsComposer(thisObj)
{
 //
 // HELPER FUNCTIONS
 //

 /**
 * Returns a random number between min and max.
 */
 function getRandomArbitary (min, max)
 {
 return Math.random() * (max - min) + min;
 }

 /**
 * Returns a random integer between min and max.
 * This results in a uniform distribution! Using Math.round() would result in a non-
uniform distribution ->
 * http://stackoverflow.com/questions/1527803/generating-random-numbers-in-
javascript-in-a-specific-range
 */
 function getRandomInt (min, max)
 {
 return Math.floor(Math.random() * (max - min + 1)) + min;
 }

 /**
 * Returns escaped string (Quote, Double-Quote)
 */
 String.prototype.addSlashes = function()
 {
 return this.replace(/[\\"']/g, '\\$&').replace(/\u0000/g, '\\0');
 }

 /**
 * openCompPanel()
 *
 * Description:
 * Opens a given composition. WARNING: To achieve this effect the undocumented
function 'workAreaDuration()' is used.
 * Don't use the according setting if you run into any errors.
 *
 * Credit goes to Rich Helvey on the creative-cow-forums:
 * http://forums.creativecow.net/thread/227/10710
 *
 * Parameters:
 * thisComp - The composition to be opened.
 *
 * Returns:
 * Nothing.
 */
 function openCompPanel(thisComp)
 {
 var duration = thisComp.workAreaDuration;
 thisComp.workAreaDuration = 0.06;
 thisComp.ramPreviewTest("",1,"");
 thisComp.workAreaDuration = duration;

23

Appendix | Script listings

 }

 //
 // INIT VARS
 //

 // Global Var-Object to be accessed from everywhere
 var o = new Object();
 o.scriptName = "GenArtsComposer";
 o.scriptTitle = o.scriptName + " v1.0";
 o.clipFolders = new Array(); // Store the references to the folders that hold all
the clips in an array
 o.sm_gacPal; // Store reference to the main panel / window-palette

 o.mainComp; // Reference to the main-comp which holds all the clips
 // Define default-values for UI:
 o.mainCompName = "GenArts_MainComp";
 o.mainCompWidth = 1280;
 o.mainCompHeight = 720;
 o.mainCompPixelAspect = 1;
 o.mainCompDuration = 20;
 o.mainCompFramerate = 25;
 o.cbTimestamp = true;
 o.cbRandomStart = true;
 o.cbLoopItems = false;
 o.cbOpenComp = false;

 o.strMinAE100 = {en: "This script requires Adobe After Effects CS5 or later."};
 o.strHelp = {en: "?"};
 o.strConfigureFinalComposition = {en: "Configure final composition", de:
"Einstellungen der finalen Komposition"};
 o.strName = {en: "Name", de: "Name"};
 o.strWidth = {en: "Width", de: "Breite"};
 o.strHeight = {en: "Height", de: "Höhe"};
 o.strPixelAspect = {en: "Pixel Aspect", de: "Pixel-Seitenverhältnis"};
 o.strDuration = {en: "Duration", de: "Dauer"};
 o.strFramerate = {en: "Framerate", de: "Framerate"};
 o.strPx = {en: "px"};
 o.strSeconds = {en: "s"};
 o.strFPS = {en: "fps"};
 o.strSettings = {en:"Settings", de: "Einstellungen"};
 o.strAddTimestamp = {en: "Add timestamp at the end of comp-name", de: "Zeitstempel an
Kompositionsname anhängen"};
 o.strRandomStart = {en: "Start items at random points in time", de: "Die einzelnen
Elemente an zufälligen Zeitpunkten beginnen lassen"};
 o.strLoopItems = {en: String("..and loop each item until its original
duration").addSlashes(), de: "..und diese bis zur ihrer ursprünglichen Länge
wiederholen"};
 o.strOpenComp = {en: "Open composition after successful creation", de: "Öffne
Komposition nach erfolgreicher Erstellung"};
 o.strGenerateComp = {en: "Generate Compositon", de: "Generiere Komposition"};
 o.strFillInAllFields = {en: "Please fill in all input fields.", de: "Bitte füllen Sie
alle Textfelder aus."};
 o.strHelpText =
 {
 en: "Copyright (c) 2013 Sebastian Mayrhuber.\n" +
 "All rights reserved.\n" +
 "\n" +
 "This script allows you to create a randomly composed video from elements that
you provide. Those assets can be anything that can be placed on the After Effects
timeline, including compositions, movie files, image files, audio files etc.\n" +
 "\n" +
 "Guide:\n" +
 "To make the script work, the assets have to be placed inside folders which
follow this simple naming convention: 'layer1', 'layer2' and so on. The reason behind
this is that the script is able to stack assets on top of each other. Assets placed
inside 'layer2' will appear above assets from 'layer1', assets from 'layer3' above assets
from 'layer2' and so on. The number of folders is not limited. The elements themselves
can be named arbitrarily. The upper part of the user interface allows you to configure
the composition to be created whereas in the lower part the script's behavior can be
adjusted.\n" +

24

Appendix | Script listings

 "\n" +
 "Note 1: This version of the script requires After Effects CS5 or later. It can
be used as a dockable panel by placing the script in a ScriptUI Panels subfolder of the
Scripts folder, and then choosing this script from the Window menu.\n" +
 "\n" +
 "Note 2: The setting 'Open comp after successful creation' uses an undocumented
function of After Effects. It should not cause any problems but if you run into any
errors just disable it."
 };

 // Just for testing: Manually setting the current local language
//~ $.locale = "de"; // Restore by setting var to null!

 //
 // FUNCTIONS
 //

 /**
 * buildUI()
 *
 * Description:
 * This function builds the user interface.
 *
 * Parameters:
 * thisObj - Panel object (if script is launched from Window menu); null otherwise.
 *
 * Returns:
 * Window or Panel object representing the built user interface.
 */

function buildUI(thisObj)
{

var pal = (thisObj instanceof Panel) ? thisObj : new Window("palette",
o.scriptName, undefined, {resizeable:true});

if (pal !== null)
 {
 // Dev-Info: The following string is enclosed in 3 quotes > this way
multiline strings don't need a backslah ("\") at the end of each line!
 var res =
 """Group {
 orientation:'column', alignment:['fill', 'fill'], alignChildren:['left',
'top'],
 header: Group {
 orientation:'row', alignment:['fill', 'top'], margins:[0, 0, 0, 10],
 title: StaticText { text:'""" + o.scriptTitle + """' },
 help: Button { text:'""" + localize(o.strHelp) + """', maximumSize:
[30, 20], alignment:['right', 'center'] },
 },
 mainCompPnl: Panel {
 text:'""" + localize(o.strConfigureFinalComposition) + """',
orientation:'row', alignment:['fill', 'fill'], alignChildren:['left', 'top'], margins:20,
 lblGrp: Group {
 orientation:'column', alignChildren:['right', 'top'],
 g1: Group { margins:[0, 2, 0, 0],
 lblName: StaticText { text:'""" + localize(o.strName) +
""":' },
 },
 g2: Group { margins:[0, 5, 0, 0],
 lblWidth: StaticText { text:'""" + localize(o.strWidth) +
""":' },
 },
 g3: Group { margins:[0, 5, 0, 0],
 lblHeight: StaticText { text:'""" + localize(o.strHeight) +
""":' },
 },
 g4: Group { margins:[0, 5, 0, 0],
 lblPixelAspect: StaticText { text:'""" +
localize(o.strPixelAspect) + """:' },

25

Appendix | Script listings

 },
 g5: Group { margins:[0, 5, 0, 0],
 lblDuration: StaticText { text:'""" + localize(o.strDuration)
+ """:' },
 },
 g6: Group { margins:[0, 5, 0, 0],
 lblFramerate: StaticText { text:'""" +
localize(o.strFramerate) + """:' },
 },
 },
 txtGrp: Group {
 orientation:'column', alignment:['fill','fill'], alignChildren:
['left', 'top'],
 txtName: EditText { text:'""" + o.mainCompName + """', alignment:
['fill','top'], characters:20 },
 g1: Group { orientation:'row',
 txtWidth: EditText { text:'""" + o.mainCompWidth + """',
characters:5 },
 g1_1: Group { margins:[-9, 0, 0, 0],
 lblPixel: StaticText { text:'""" + localize(o.strPx) +
"""' },
 }
 },
 g2: Group { orientation:'row',
 txtHeight: EditText { text:'""" + o.mainCompHeight + """',
characters:5 },
 g2_2: Group { margins:[-9, 0, 0, 0],
 lblPixel: StaticText { text:'""" + localize(o.strPx) +
"""' },
 }
 },
 txtPixelAspect: EditText { text:'""" + o.mainCompPixelAspect +
"""', characters:5 },
 g3: Group { orientation:'row',
 txtDuration: EditText { text:'""" + o.mainCompDuration +
"""', characters:5 },
 g3_3: Group { margins:[-9, 0, 0, 0],
 lblSeconds: StaticText { text:'""" +
localize(o.strSeconds) + """' },
 }
 },
 g4: Group { orientation:'row',
 txtFramerate: EditText { text:'""" + o.mainCompFramerate +
"""', characters:5 },
 g4_4: Group { margins:[-9, 0, 0, 0],
 lblFPS: StaticText { text:'""" + localize(o.strFPS) +
"""' },
 }
 },
 },
 },

 settingsPnl: Panel {
 text:'""" + localize(o.strSettings) + """', orientation:'column',
alignment:['fill', 'fill'], alignChildren:['left', 'top'], margins:20,
 grpTimestamp: Group {
 orientation:'row', alignment:['left', 'top'], alignChildren:
['left', 'top'],
 cbTimestamp: Checkbox { value:""" + o.cbTimestamp + """ },
 lbl: StaticText { text:'""" + localize(o.strAddTimestamp) +
"""' },
 },
 grpRandomStart: Group {
 orientation:'row', alignment:['left', 'top'], alignChildren:
['left', 'top'],
 cbRandomStart: Checkbox { value:""" + o.cbRandomStart + """ },

26

Appendix | Script listings

 lbl: StaticText { text:'""" + localize(o.strRandomStart) +
"""' },
 },
 grpLoopItems: Group {
 orientation:'row', alignment:['left', 'top'], alignChildren:
['left', 'top'], margins:[15, 0, 0, 0],
 cbLoopItems: Checkbox { value:""" + o.cbLoopItems + """ },
 lbl: StaticText { text:'""" + localize(o.strLoopItems) + """' },
 }
 grpOpenComp: Group {
 orientation:'row', alignment:['left', 'top'], alignChildren:
['left', 'top'],
 cbOpenComp: Checkbox { value:""" + o.cbOpenComp + """ },
 lbl: StaticText { text:'""" + localize(o.strOpenComp) + """' },
 }
 }
 grpGenerateComp: Group {
 orientation:'row', alignment:['fill', 'top'], alignChildren:['right',
'bottom'],
 generateCompBtn: Button { text:'""" + localize(o.strGenerateComp) +
"""', minimumSize:[150, 20] },
 }
 }""";

 // Add the previously created 'resource specification'-string to the main
panel and SAVE returned object for later access
 pal.mainGrp = pal.add(res);

 // Re-'Layout()' and 'Resize()' and also do this on resizing the panel
 pal.layout.layout(true);
 pal.mainGrp.minimumSize = pal.mainGrp.size;
 pal.layout.resize();
 pal.onResizing = pal.onResize = function () { this.layout.resize(); }

 // EVENT-HANDLER
 pal.mainGrp.header.help.onClick = function () { alert(o.scriptTitle + "\n" +
localize(o.strHelpText), o.scriptName); };
 pal.mainGrp.settingsPnl.grpRandomStart.cbRandomStart.onClick =
onClickCbRandomStart;
 pal.mainGrp.grpGenerateComp.generateCompBtn.onClick = generateComposition;

 return pal;
 }
 }

 /**
 * onClickCbRandomStart()
 *
 * Description:
 *
 * Parameters:
 * None.
 *
 * Returns:
 * Nothing.
 */
 function onClickCbRandomStart()
 {
 updateCheckboxStates();
 }

 /**
 * updateCheckboxStates()
 *
 * Description:
 *
 * Parameters:
 * None.
 *
 * Returns:

27

Appendix | Script listings

 * Nothing.
 */
 function updateCheckboxStates()
 {
 var cbRandomStart = o.sm_gacPal.mainGrp.settingsPnl.grpRandomStart.cbRandomStart;
// ..just for easier referencing in this function
 var cbLoopItems = o.sm_gacPal.mainGrp.settingsPnl.grpLoopItems.cbLoopItems;
// ..just for easier referencing in this function

 if (cbRandomStart.value)
 cbLoopItems.enabled = true;
 else
 {
 cbLoopItems.value = false;
 cbLoopItems.enabled = false;
 }
 }

 /**
 * generateComposition()
 *
 * Description:
 *
 * Parameters:
 * None.
 *
 * Returns:
 * Nothing.
 */
 function generateComposition()
 {
 // CHECK user input for correctness and completeness
 var allOK = true;
 var timestamp = "";
 var randomStart = false;
 var txtGrp = o.sm_gacPal.mainGrp.mainCompPnl.txtGrp; // ..just for easier
referencing in this function
 var settingsPnl = o.sm_gacPal.mainGrp.settingsPnl; // ..just for easier
referencing in this function

 if (txtGrp.txtName.text == "" ||
 txtGrp.g1.txtWidth.text == "" ||
 txtGrp.g2.txtHeight.text == "" ||
 txtGrp.txtPixelAspect.text == "" ||
 txtGrp.g3.txtDuration.text == "" ||
 txtGrp.g4.txtFramerate.text == "")
 {
 allOK = false;
 alert(localize(o.strFillInAllFields), o.scriptName);
 }

 if (!allOK)
 return;

 // Check setting: Add timestamp to comp-name?
 if (settingsPnl.grpTimestamp.cbTimestamp.value)
 {
 var now = new Date();
 timestamp = "_";
 timestamp += (now.getHours() < 10) ? "0" : ""; timestamp += now.getHours();
 timestamp += (now.getMinutes() < 10) ? "0" : ""; timestamp +=
now.getMinutes();
 timestamp += (now.getSeconds() < 10) ? "0" : ""; timestamp +=
now.getSeconds();
//~ timestamp = "_" + Math.round(new Date().getTime() / 1000); // ..or Unix-
Timestamp (in seconds)
 }

 // Treat as a single undo-able event

28

Appendix | Script listings

 app.beginUndoGroup("GenArtsComposer");

 // Search through project and store references to all folders named 'layer1',
'layer2', and so on in an array
 o.clipFolders = new Array();
 for (var i=1; i<=app.project.numItems; i++)
 {
 if ((app.project.item(i) instanceof FolderItem) && (new
RegExp(/^layer\d+/).test(app.project.item(i).name)))
 o.clipFolders.push(app.project.item(i));

 // Deselect every existing 'main composition' > newly generated main-comp
gets selected later on for easier spotting inside the panel
 if (app.project.item(i).name.indexOf(txtGrp.txtName.text) != -1)
 app.project.item(i).selected = false;
 }

 // Just for debugging: Log found clipFolders into JS-console
 for (i=0; i<o.clipFolders.length; i++)
 $.writeln("o.clipFolders[" + i + "] = " + o.clipFolders[i].toString() + " ,
name = " + o.clipFolders[i].name);

 // Create 'main' composition that holds all the clips and 'select' it afterwards
(for easier spotting in the project panel)
 o.mainComp = app.project.items.addComp(txtGrp.txtName.text + timestamp,
Number(txtGrp.g1.txtWidth.text), Number(txtGrp.g2.txtHeight.text),
Number(txtGrp.txtPixelAspect.text), Number(txtGrp.g3.txtDuration.text),
Number(txtGrp.g4.txtFramerate.text));
 o.mainComp.selected = true;

 // Loop through all 'layer'-folders and add randomly selected items from every
folder to the main-comp.
 // > Random items will be added one after another until the timeline is
completely filled with 'material'.
 for (var i=0; i<o.clipFolders.length; i++)
 {
 var curLength = 0; // helper-var used for 'filling' the timeline

 if (o.clipFolders[i].numItems > 0)
 {
 while (curLength < o.mainComp.duration)
 {
 // Get random item from layer-folder
 var randomItem = o.clipFolders[i].item(getRandomInt(1,
o.clipFolders[i].numItems));
 var itemLayer = o.mainComp.layers.add(randomItem);

 // Random item is a COMPOSITION
 if (randomItem instanceof CompItem)
 {
 // Check setting: Start items at random points in time?
 if (settingsPnl.grpRandomStart.cbRandomStart.value)
 {
 o.cbRandomStart = true;

 // Check setting: When starting items at random points in
time: loop each item until it's original duration?
 if (settingsPnl.grpLoopItems.cbLoopItems.value)
 {
 o.cbLoopItems = true;

 // Make sure the items are placed one after another in
the timeline using a helper-variable 'curLength'
 itemLayer.startTime = curLength;

 // Activate Timeremapping
 itemLayer.timeRemapEnabled = true;

 // Add an expression to the timeRemap property that lets
the layer start at a random position in time and loop if it ends

29

Appendix | Script listings

 var expString = "seedRandom(index, true);\n" +
 "d = source.duration;\n" +
 "offset = random(d);\n" +
 "(time + offset)%d";
 itemLayer.property("ADBE Time Remapping").expression =
expString;

 // Update helper-variable 'curLength'
 curLength += randomItem.duration;
 }
 else
 {
 o.cbLoopItems = false;

 // Set random inPoint
 itemLayer.inPoint = getRandomArbitary(0,
randomItem.duration);

 // Make sure the items are placed one after another in
the timeline using a helper-variable 'curLength'
 itemLayer.startTime = curLength - itemLayer.inPoint;

 // Update helper-variable 'curLength'
 curLength = itemLayer.outPoint;
 }

 } // END if (settingsPnl.grpRandomStart.cbRandomStart.value)
 else
 {
 o.cbRandomStart = false;

 // Make sure the items are placed one after another in the
timeline using a helper-variable 'curLength'
 itemLayer.startTime = curLength;

 // Update helper-variable 'curLength'
 curLength += randomItem.duration;
 }

 } // END if (randomItem instanceof CompItem)

 // Random item is a FOOTAGE-ITEM
 if (randomItem instanceof FootageItem)
 {
 // Make sure the items are placed one after another in the
timeline using a helper-variable 'curLength'
 itemLayer.inPoint = curLength;

 // Set random footage-item-duration
 itemLayer.outPoint = itemLayer.inPoint + getRandomArbitary(1, 5);

 // Update helper-variable 'curLength'
 curLength = itemLayer.outPoint;
 }

 } // END while (curLength < o.mainComp.duration)
 } // END if (o.clipFolders[i].numItems > 0)
 } // END for (var i=0; i<o.clipFolders.length; i++)

 // Check setting: Open composition after successful creation?
 if (settingsPnl.grpOpenComp.cbOpenComp.value)
 openCompPanel(o.mainComp);

 // End of the actions that make the single undoable event
 app.endUndoGroup();
 }

 //
 // MAIN CODE
 //

30

Appendix | Script listings

 // AE-Version check

if (parseFloat(app.version) < 10.0)
alert(localize(o.strMinAE100), o.scriptTitle) ;

else
 {
 // Build and show the palette
 o.sm_gacPal = buildUI(thisObj);
 if (o.sm_gacPal !== null)
 {
 // Update UI values, if saved in the settings
 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_compName"))
 o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.txtName.text =
app.settings.getSetting("sm", "sm_GenArtsComposer_compName");

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_compWidth"))
 o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g1.txtWidth.text =
app.settings.getSetting("sm", "sm_GenArtsComposer_compWidth");

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_compHeight"))
 o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g2.txtHeight.text =
app.settings.getSetting("sm", "sm_GenArtsComposer_compHeight");

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_compPixelAspect"))
 o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.txtPixelAspect.text =
app.settings.getSetting("sm", "sm_GenArtsComposer_compPixelAspect");

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_compDuration"))
 o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g3.txtDuration.text =
app.settings.getSetting("sm", "sm_GenArtsComposer_compDuration");

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_compFramerate"))
 o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g4.txtFramerate.text =
app.settings.getSetting("sm", "sm_GenArtsComposer_compFramerate");

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_timestamp"))
 o.sm_gacPal.mainGrp.settingsPnl.grpTimestamp.cbTimestamp.value =
(app.settings.getSetting("sm", "sm_GenArtsComposer_timestamp") == "false") ? false :
true;

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_randomStart"))
 o.sm_gacPal.mainGrp.settingsPnl.grpRandomStart.cbRandomStart.value =
(app.settings.getSetting("sm", "sm_GenArtsComposer_randomStart") == "false") ? false :
true;

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_loopItems"))
 o.sm_gacPal.mainGrp.settingsPnl.grpLoopItems.cbLoopItems.value =
(app.settings.getSetting("sm", "sm_GenArtsComposer_loopItems") == "false") ? false :
true;

 updateCheckboxStates();

 if (app.settings.haveSetting("sm", "sm_GenArtsComposer_openComp"))
 o.sm_gacPal.mainGrp.settingsPnl.grpOpenComp.cbOpenComp.value =
(app.settings.getSetting("sm", "sm_GenArtsComposer_openComp") == "false") ? false : true;

 // Save current UI settings upon closing the palette
 o.sm_gacPal.onClose = function()
 {
 app.settings.saveSetting("sm", "sm_GenArtsComposer_compName",
o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.txtName.text);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_compWidth",
o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g1.txtWidth.text);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_compHeight",
o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g2.txtHeight.text);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_compPixelAspect",
o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.txtPixelAspect.text);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_compDuration",
o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g3.txtDuration.text);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_compFramerate",

31

Appendix | Script listings

o.sm_gacPal.mainGrp.mainCompPnl.txtGrp.g4.txtFramerate.text);

 app.settings.saveSetting("sm", "sm_GenArtsComposer_timestamp",
o.sm_gacPal.mainGrp.settingsPnl.grpTimestamp.cbTimestamp.value);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_randomStart",
o.sm_gacPal.mainGrp.settingsPnl.grpRandomStart.cbRandomStart.value);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_loopItems",
o.sm_gacPal.mainGrp.settingsPnl.grpLoopItems.cbLoopItems.value);
 app.settings.saveSetting("sm", "sm_GenArtsComposer_openComp",
o.sm_gacPal.mainGrp.settingsPnl.grpOpenComp.cbOpenComp.value);
 }

 if (o.sm_gacPal instanceof Window)
 {
 // Show the palette
 o.sm_gacPal.center();
 o.sm_gacPal.show();
 }
 else
 o.sm_gacPal.layout.layout(true);

 } // if (o.sm_gacPal !== null)
 } // else AE-Version check

})(this);

32

	1. Introduction
	1.1. Problem and scope
	1.2. Structure

	2. Expressions in After Effects
	2.1. Definition
	2.2. Purpose
	2.3. Use
	2.4. Examples
	2.4.1. Example 'clock'

	3. Scripts in After Effects
	3.1. Definition
	3.2. Purpose
	3.3. Use
	3.4. Examples
	3.4.1. Example 'SetGuideLayers'

	4. Case study: 'Generative Art Composer'
	4.1. Introduction
	4.2. Script process

	5. Discussion
	6. Appendix
	6.1. References
	6.1.1. Research papers
	6.1.2. Books
	6.1.3. Manuals
	6.1.4. Web pages

	6.2. CD content
	6.3. Script listings
	6.3.1. ConvertToGuideLayers.jsx
	6.3.2. GenArtsComposer.jsx

